

Crafting Tomorrow, Today!

Client Case Study: AWS Infrastructure Re-design

Disclaimer!

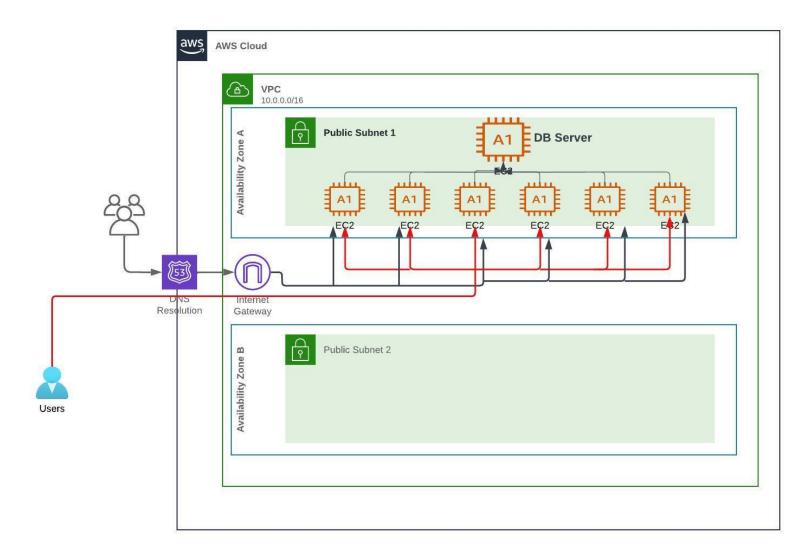
- 1. This content is the property of Cloud Logicx. Any reuse of this content is strictly prohibited.
- 2. For security and client confidentiality, any client-specific details have been intentionally removed.

The Challenge!

A SaaS-based on-prem CRM solution was migrated to AWS by an in-house development team using a lift-and-shift approach. However, inherent issues related to Availability, Security, and Scalability persisted due to the monolith architecture of the application, hindering optimised cloud adoption, resulting in a negative customer experience.

Tasks:

- Review the design and make recommendations to improve the availability, reliability and security of the system as a whole.
- Work with the internal development team to implement the necessary changes to enhance the customer experience.
- Adhere to the client's monthly budget.



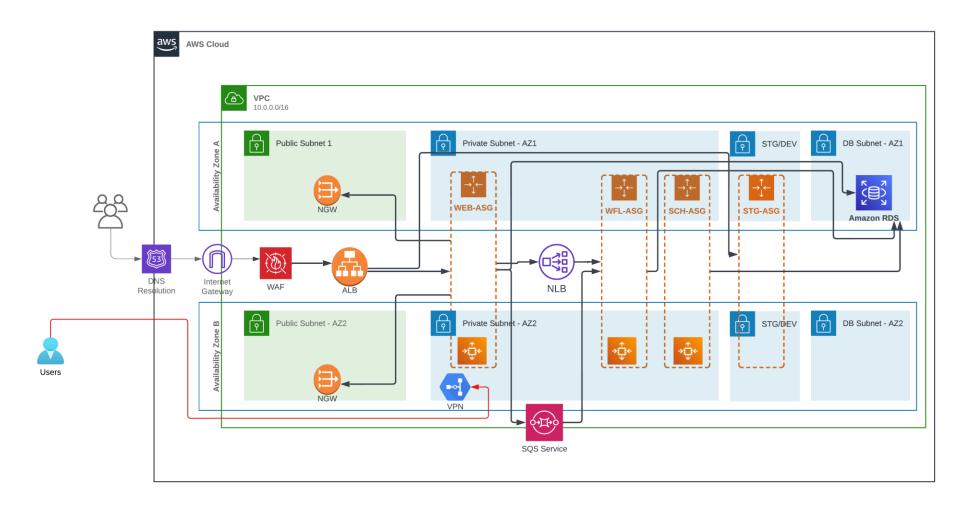
Pre-engagement Infrastructure Summary

- Application was deployed as a monolith with all services deployed on a single server.
- Load balancing was accomplished by deploying multiple independent instances of the application, utilizing Route 53 for traffic distribution across multiple servers.
- Database was hosted on a separate EC2 instance.
- Application was linked to the DB by hardcoding the DB IP.
- Only basic security controls were in place.
- There was no backup policy in place.
- No formal logging and audit policy in place.
- Only basic AWS monitoring was in place.

Pre-engagement Infrastructure Diagram

Re-Designed Infrastructure Summary

- A new VPC was created, aligned with the AWS Well-Architected Framework, incorporating Public, Private, Database, and Staging subnets.
- The application underwent a review and was redeployed in an Auto-Scaling group, positioned behind an Application Load Balancer to efficiently serve client traffic.
- Certain application services were deployed separately to alleviate the load on front-end servers, enhancing the overall customer experience.
- Configuration updates enabled the application to utilize DNS for connecting to the database.
- To facilitate Auto-Scaling, especially during Scaling-in, the application was improved with session state sharing.



Re-Designed Infrastructure Summary

- Internal Network Load Balancer and SQS service were implemented to facilitate Sync and Async communication between services.
- The database underwent a re-deployment as an AWS RDS service.
- Security measures such as WAF, NAT Gateway, Security Groups lockdown, Remote Access Gateway, IAM, and MFA were implemented to fortify the infrastructure.
- CloudWatch and third-party monitoring tools were incorporated for comprehensive and enhanced monitoring.

Re-Designed Infrastructure Diagram

Outcome?

- 1. The redesigned architecture **enhanced scalability and redundancy** through a new VPC and Auto-Scaling group.
- 2. Service isolation optimised front-end servers, leading to an **enhanced customer experience.**
- 3. Internal Network Load Balancer and SQS service **streamlined Sync and Async communication between services**.
- 4. Database re-deployment as an AWS RDS service simplified management tasks for **improved reliability**.
- 5. Security controls, including WAF, NAT Gateway, Security groups lockdown, Remote Access Gateway, IAM, and MFA, **fortified the infrastructure**.
- 6. Implementation of CloudWatch and third-party monitoring tools ensured comprehensive and proactive issue identification.

Thank you!

If you'd like to explore how Cloud Logicx can assist with your infrastructure, please feel free to reach out and schedule a no-obligation call with one of our experts.

hello@cloudlogicx.com

Ph: 020 3488 7734

